学院动态

学术报告信息发布

当前位置: 首页 >> 学术报告信息发布 >> 正文

Global convergence rate from hyperbolic systems to parabolic systems

发布日期:2024-05-29    作者:     点击:

报告题目:Global convergence rate from hyperbolic systems to parabolic systems

报告时间:202453113:00

报告地点:南湖校区老图书馆四楼会议室

主办单位:数学与统计学院

报告人: 彭跃军

报告人简介:法国克莱蒙奥佛涅大学特级教授。本科和硕士均毕业于复旦大学数学系,博士毕业于法国里昂第一大学,曾任同济大学助教、法国奥尔良和波尔多第一大学讲师、法国克莱蒙菲朗第二大学教授。彭跃军教授长期从事非线性偏微分方程及其应用方面的研究工作,尤其对拟线性双曲型方程组、空气动力学和激波、等离子体和半导体数学模型进行了深入研究,并取得了显著的科研成果及国际学术声誉,已在Ann. Inst. H. Poincaré Anal. Non Linéaire, Communication PDE, Inverse Problems, J. Math. Pures Appl., Nonlinearity, SIAM J. Math. Analysis等国际权威期刊发表90多篇学术论文。

报告摘要:It was proved that smooth solutions of partially dissipative hyperbolic systems converge to those of parabolic systems in the zero-relaxation limit with a slow time scaling. In a finite time interval, the convergence rate was established by asymptotic expansion methods. In this talk, I will present recent results on the global-in-time convergence rate. This concerns the system of balance laws in one space dimension, Euler-Maxwell systems and Euler-Poisson systems in several space dimensions. The stream function techniques and energy methods will be discussed.


上一条:Stability of viscous shocks for Burgers equations with fast diffusion and singularity

下一条:A multi-layer academic network dataset derived from statistical publications