2020年11月27日下午14:00在南湖校区新图书馆607室,北京大学姚方教授莅临我院做学术报告,会议由学院副院长徐平峰主持,学院部分老师、研究生参加了本次学术报告会。
报告题目:Online Estimation for Functional Data
摘要:Functional data analysis has attracted considerable interest, and is facing new challenges of the increasingly available datain streaming manner. In this work, we propose a new online method todynamically update the local linear estimates of mean and covariancefunctions of functional data, which is the foundation of subsequentanalysis. The kernel-type estimates can be decomposed into two sufficient statistics depending on the data-driven bandwidths. We propose to approximate the future optimal bandwidths by a dynamic sequence of candidates and combine the corresponding statistics acrossblocks to make an updated estimation. The proposed online method iseasy to compute based on the stored sufficient statistics and currentdata block. Based on the asymptotic normality of the online mean andcovariance function estimates, the relative efficiency in terms of integrated mean squared error is studied and a theoretical lower bound isobtained. This bound provides insight into the relationship between estimation accuracy and computational cost driven by the length of candidate bandwidth sequence that is pivotal in the online algorithm. Simulations and real data applications are provided to support such findings and show the advantages of the proposed method.
姚方简介:北京大学讲席教授、北大统计科学中心主任,数理统计学会(IMS)Fellow与理事会理事,美国统计学会(ASA)Fellow。2000年本科毕业于中国科技大学统计专业,2003获得加利福尼亚大学戴维斯分校统计学博士学位,曾任职于多伦多大学统计科学系长聘正教授。现担任Canadian Journal of Statistics的主编,至今担任9个国际统计学核心期刊编委,包括统计学顶级期刊Journal of the American Statistical Association和 Annals of Statistics。
报告会中,姚方教授讲解了功能数据的在线估计的一种在线动态更新函数数据均值和协变函数局部线性估计的新方法,提出用一个动态的候选序列来逼近未来的最佳带宽,并结合相应的跨块统计数据来做出更新的估计,该方法易于在线计算。随后,介绍了利用仿真和实际数据应用来彰显该方法的优点,使大家对于功能数据的在线估计有了更加深入的了解和兴趣。其中姚方教授还细心的为大家介绍几本有关这些知识的一些未来瞻仰。
与会人员踊跃提问,就感兴趣的问题与姚方教授进行了广泛的讨论和交流,教授们就提出的问题进行了详细的解答,分享了自己的心得。本次学术交流会拓展了同学们的学术视野,也激发了同学们的学习热情,聆听报告的师生均表示受益匪浅。
数学与统计学院
2020年11月27日