(通讯员:关迪)2024年6月25日上午10点,我院特邀复旦大学朱雪宁教授做线上学术报告,报告由数学与统计学院副院长杨凯副教授主持,学院部分老师、全体研究生参加了本次线上学术报告会。
报告人简介:复旦大学大数据学院教授,博士生导师。2017年获得北京大学光华管理学院商务统计与经济计量系博士学位,2017-2018在美国宾夕法尼亚州立大学从事博士后研究工作。入选2019年度上海市青年科技英才扬帆计划,获得国家级人才称号。主要研究领域为网络数据分析、空间计量模型、高维数据建模等,研究成果发表于Journal of Econometrics, Journal of the American Statistical Association, Annals of Statistics, 中国科学等国内外经济计量与统计学期刊,著有教材2本。
报告题目:Two-way Homogeneity Pursuit for Quantile Network Vecto Autoregression
报告摘要:While the Vector Autoregression (VAR) model has received extensive attention for modelling complex time series, quantile VAR analysis remains relatively underexplored for high-dimensional time series data. To address this disparity, we introduce a two-way grouped network quantile (TGNQ) autoregression model for time series collected on large-scale networks, known for their significant heterogeneous and directional interactions among nodes. Our proposed model simultaneously conducts node clustering and model estimation to balance complexity and interpretability. To account for the directional influence among network nodes, each network node is assigned two latent group memberships that can be consistently estimated using our proposed estimation procedure. Theoretical analysis demonstrates the consistency of membership and parameter estimators even with an overspecified number of groups. With the correct group specification, estimated parameters are proven to be asymptotically normal, enabling valid statistical inferences. Moreover, we propose a quantile information criterion for consistently selecting the number of groups. Simulation studies show promising finite sample performance, and we apply the methodology to analyze connectedness and risk spillover effects among Chinese A-share stocks.
在报告中,朱雪宁教授先是通过生动的示例引入主题,深入浅出地解释了量子异质性。同时指出,向量自回归模型在复杂时间序列建模方面受到广受关注,但分位数自回归分析在高维时间序列数据中的应用却相对较少。为解决这一差异,朱雪宁教授引入了在大规模网络上收集的时间序列的TGNQ自回归模型。此模型因显著的节点间异构和定向交互,从而平衡了复杂性与可解释性。
TGNQ自回归模型的提出是对当前时间序列分析领域的一次重要贡献,也为未来的研究提供了新的方向和思路。
报告结束后,朱雪宁教授就老师和同学们提出的问题进行了耐心的解答,并鼓励大家积极思考和探索新的研究思路。本次学术报告不仅拓宽了师生们的学术视野,也激发了同学们对时间序列分析领域深入研究的兴趣。
(审核人:王丹、王纯杰)
数学与统计学院
2024年6月25日