学院动态

学术报告信息发布

当前位置: 首页 >> 学术报告信息发布 >> 正文

Classical and Innovative Methods in Support Vector Machines

发布日期:2024-04-16    作者:     点击:

报告题目:Classical and Innovative Methods in Support Vector Machines

报告时间:2024418 19:00

报告地点:南湖校区教学科研楼307

主办单位:数学与统计学院

报告人:Renato De leone

报告人简介:Renato De leone现任意大利卡梅里诺大学教授,博士生导师,担任数学和计算机科学系主任,科学和技术学院副院长,校长助理。1981年获得意大利那不勒斯大学博士学位。1984-1993年间任美国威斯康辛大学麦迪逊分校的客座教授。主要研究领域包括优化和数学规划、数学建模、机器学习和决策支持系统。

摘要Support Vector Machines (SVMs) are a novel and very effective tool for classification and regression problems. The method requires the solution of a convex quadratic problem with linear constraints and simple bounds on the variables, for which convergence results and effective algorithms are available. In this talk, after presenting the main characteristics of classical SVM methods, some novel approaches will be presented based on a variation of the standard SVM method where two nonparallel hyperplanes are constructed. In particular, Sparse Twin Parametric Margin SVM, and Multiclass Robust Twin Parametric Margin SVM will be presented.


上一条:Examining Sectoral Structure Differences Between China and Japan Through Network Analysis

下一条:An automatic MDDM-based test for martingale difference hypothesis