报告题目:Sparse Factor Model for High-dimensional Time Series
报告时间:2024年4月10日 上午10:00
会议链接:https://meeting.tencent.com/dm/l0Zli8uZnSb2
会议 ID:137-670-366
主办单位:数学与统计学院
报告人:张荣茂
报告人简介:张荣茂,现为浙江大学数学学院教授,浙江省现场统计研究会和多元分析分会副理事长。2004年在浙江大学获得博士学位,2004年7月至2006年6月在北京大学从事博士后研究,2006年至今在浙江大学工作,多次访问香港科大、香港中文大学和伦敦政治经济学院。主要从事非平稳时间序列和高维空间数据的理论与应用研究,已发表SSCI/SCI论文60多篇,发表的杂志包括Annals of Statistics,Journal of the American Statistical Association,Journal of Econometrics,Econometric Theory, Journal of Business and Economic Statistics等统计与计量经济杂志。2015年获浙江省杰出青年基金,主持浙江省重点基金项目1项、国家自然科学基金和省部级基金项目多项,2021年获浙江省自然科学奖(二等奖)和第一届统计学科学技术进步奖(三等奖),现任J. Korean Statist. Soc.等杂志的编委。
摘要:Factor models have been extensively employed in high-dimensional time series. However, little is known for the case with sparse loading matrix. This talks will introduce a sparse factor model with an easy-to-implement estimation method, aiming to enhance interpretability and relax the constraints on the dimension p of the time series. In particular, it is shown that under weak conditions, the loading space could be consistently estimated with a convergence rate related to the sparseness for each column in the loading matrix and the eigenvalues used to recover the latent factor and loading matrix. In addition, a randomized sequential test is introduced to determine the number of sparse factors. Simulations and real data analysis on sea surface air pressure and stock portfolios are also provided to illustrate the performance of the proposed method.