2018年9月20日下午3点30分在林园校区教学图书楼705室,西安电子科技大学数学与统计学院概率统计系李本崇莅临我院做学术报告。报告由学院副院长徐平峰主持,学院部分老师、研究生、及本科生和其他学院师生参加了本次学术报告会。
报告题目:Some advances in discrete Markov networks and Bayesian networks
摘要:
Markov networks and Bayesian networks are two popular models for classification. Vapnik-Chervonenkis dimension and Euclidean dimension are two measures of complexity of a class of functions. We show that these two dimensional values of the concept class induced by a discrete Markov network are identical, and the value equals dimension of the toric ideal corresponding to this Markov network as long as the toric ideal is nontrivial. Furthermore, we provide a simple formula for calculating the dimensions of discrete Markov networks. For a general Bayesian network, we show that dimension of the corresponding toric ideal offers an upper bound of Euclidean dimension. Consider VC dimensions induced by the concept classes of a class of Bayesian networks, where each underlying graph is a cycle containing exactly one V-structure. We prove that the three quantities mentioned above for this kind of Bayesian networks are equal.
李本崇简介:
李本崇,2001年考入东北师范大学数学与应用数学专业,2005年在该校概率论与数理统计方向读研,2007年免试读该方向的博士研究生,2012年12月博士毕业。2013年3月至今在西安电子科技大学数学与统计学院概率统计系工作。十余年来,致力于图模型和代数统计学的学习和研究,已在国际知名统计学和数学期刊Pattern Recognition, Statistica Sinica等发表和接收SCI论文10篇;曾主持一项国家自然科学基金青年基金项目,现主持陕西省自然科学青年基金一项。
本次报告让师生对其报告内容有了形象的了解,开扩了视野,而且进一步激发了广大师生的极大兴趣,在场师生均表示,聆听本次报告受益匪浅,获益良多,增强了自信心,进一步争强了广大师生的统计思维,加强了学生对统计专业的喜爱!
数学与统计学院
2018年9月20日